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1. INTRODUCTION

Sparse matrix methods have been important in practical linear programming

from the very earliest implementations of the revised simplex method,

These methods have become even more important as the size of problems
presented for solution has continucd to grow until, at present, linear
programs with a few thousand constraints are quite commonplace, Fortun-
ately, and not surprisingly, the densities of the constraint matrices
decline with the increase in dimension thus keeping the amount of data

storage and arithmetic within possible proportions,

Techniques for handling sparse matrices are important in two major areas

in linear programming:-

1. Storage and retrieval of the problem data. There are several
techniques for storing sparse matrices in use at present (see Smith {13}

and de Buchet (6)).

e g T . e

2, Maintaining and applying the basis inverse or substitute inverse,

- ——— g

This paper is concerned with the second area, Readers will be assumed to
be familiar with the simplex method using the product form of inverse
(see Dantzig [7)) and the Gaussian elimination for solving systems of

equations (see Forsythe and Moler (10)).

In recent years it has been realized that the sparsity of the inverse repre-
sentation produced by the linear programming inversion routine can be
drastically improved by using the Gaussian or Elimination form of inverse l

J (E.F.I,) rather than using the Gauss-Jordan or product form of inverse

13 (P.¥,1.).  'This scheme was first advocated by Markowitz [11) and subsequently
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for the special case of staircase matrices by Dantzig [ﬁ]. Later still
Dantzig, Harvey, McKnight and Smith [Q] cxperimentally demonstrated the
superiority of the E.F,I, over the P,F, I, for a number of linear programming
problems and Brayton, Gustavson and Willoughby [5) were able to prove this

for general sparse matrices,

The elimination form of inverse is now known to be implemented in at least
two commercial linear programming codes; Standard Oil's M5 code £9] and

Scientific Control Systems' UMPIRE code (see Beale [3}). Other codes are
in the course of being modified and may have been already. Some aspects
of the P,F.I. and E,F,I, inversion techniques will be examined in the next

section.

The success of the Gaussian or Elimination form of inverse naturally leads
one to ask whether the resulting triangular factors can be used to advantage
in updating the inverse in the iterations following a re-inversion., The
answer would certainly appear to be yes, Dantzig (Q) advocated updating

the triangular factors of the basis for his staircase algorithm since :his
preserves the staircase form of the factors. It seems extremely likely

that in this special case '\pdating the factors rather than using the ordinary
product form of updating would lead to an increase in efficiency. Bennett
and Green [4] pursued this technique for general sparse matrices and Bartels [1)
and Bartels and Golub CZ) have advocated a form of Dantzig's method on the
grounds of numerical stability, without however commenting on the sparsity
implications, Brayton et al [5) have proposed two other updating techniques
although their concern is not primarily with efficiency in terms of the

simplex method.

The three new proposals will be reviewed and compared in Section 3.together

with their implications for the simplex method, One of these methods is then
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selected for some computational experiments, the results of which are presented
in Section 4, Section 5 describes how this method might be incorporated

efficiently into a production code.
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2, THE PRODUCT AND ELIMINATION FORMS OF INVERSE

P,F,I,

A popular method of carrying out re-inversion (see Orchard-Hays {12)) is
to order the rows (implicitly) and the columns (explicitly) of B and

partition as follows:-

N
N
B = A B
D E A
2
L e

where /\1 and /\2 are lower triangular, The submatrix?g is sometimes

referred to as the "bump’" and those vectors with elements inl\]_are "above
the bump', those in /\2 "below the bump', It seems to be characteristic of
most linear programs that the submatrices/\]'and particularly/\2 are quite

substantial portions of B,

The above partitioned form of B may be factorized thus

P
A I I i
B = |A 1 B 1 1
D 1 1 E 1
L N,

Since /\1 and /\2 are triangular the calculation of the product form of

o~
inverse is non-trivial only for the submatrix B. Various "merit'" schemes
have been proposed for selecting the order of pivots in B but they will not

be discussed here (sec e.g. Tewarson [15)).

Using the notation of reference 5 we may then express B as a product of

elementary transformations




B = Tl T2 “ o Tt
or equivalently
-1 -1 -1 -1
B = T} ook T2 T1

where Tk is of the form (we assume B is m x m)

i t ]

k

I+ (tk - ek) e

K its transpose, and

h
where e, is the kt unit m vector, e

where bk is the kth column of B,

Note however that two transformations are made for each column in the "bump",

hence the elements of the Tk for such columns are zero on the rows corresponding

to /\2 and in addition a second transformation'with a unit pivot and the kth

column of E on the rows of/\z,is also made, Note also that

-1 -1
Tk = I = tkk (t

K and that it is essentially necessary to keep

K~ ek) e

-1
= to store Tk . (see [5)).

only the vector tk to store Tk,and tk and t




E.F.1,

The above partitioning scheme may be used with only a slight modification
in the elimination form of inverse, By rearranging the rows and columns

of the submatrices /\2, E and D we may repartition B to give (sec Beale (1)

Al
~
D

o]
n

A

2

=R =

A

~
where /\2 is now upper triangular, This procedure obviously facilitates
factorization into triangular factors by Gaussian elimination since again

~
only the factorization of B is non-trivial,

Suppose B is now factorized into LU where L is lower and U is upper triangular.

th
Let 'ek and uk be the kK columns of L and U, then defining

o] - L}
Lk = 1 + (‘k ek) e
= + - .
Uk 1 (uk ek) ek
we may factorize
L = Ll Lz s 00 Lm
U = m m-l o8 Ul
Hence B-l = U-1 U--1 L-l L L-l
1 m m 1l

There is some latitude in the choice of values of diagonal elements of L and U.

The most efficient choice would appear to be setting Wk to 1 for k in

~
partitions A B and lkk to 1 in partition /\2. If this is done the number

1'

of transformations (disregarding unit transformations) is cexactly the same as

for the P.F.I, since two transformations are calculated only for the columns
~
B

in B. 6




~
The order of choice of pivot elements in B may be decided here, as for

the P.F.I., by merit schemes, These are exhaustivaly discussed by

Dantzig et al [9])..
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R METHODS OF UPDATING THE INVERSE

In this section we briefly review, without rigorous proof, and compare four
methods of updating the inverse, All except the [irst assume the elimination
form of inverse discussed in the previous section, With the exception of

method Il all are described at greater length by Brayton et al [5].
Method 1 L7

This is the standard procedure used in the product form of the simplex method.

Suppose column bk of the basis is to be replaced by Bk' Let B be the original

basis (factorized in either E,F.I, or P,F.I. form) and let 5 be the new basis,

Let %l+1 = B-l Sk

then 57l . Tt--il g1

where Tl+1 = I + (t£+1 - ek) e!
Hence if gl . Tzl o T;1 Tzl
then BTl Txl Tzl '1‘11

Further changes are made by repeating the above process,

Method I1 L&!

This is Bartels's version of Dantzig's algorithm [8]. Suppose we have

po bbb sheads




= -] -
and we again change bk to bk' Then L. ~ B will be identical to U except
in column k. Permute columns k+l,,..,m one place to the left and place

column k in position m to give a Hessenberg matrix

A\

()
-

(where Q is a permutation matrix).

: The elements below the diagonal in columns k to m=1 of H must now be

eliminated by a set of elementary transformations. An important feature of

Bartels method is that in carrying out the elimination rows may be inter-

changed or permuted to place the maximum of the elements hll " hl+1 ! on
L

the diagonal (Wilkinson's "partial pivoting" strategy [lQ]) to ensure

et o e e

numerical stability.

The result is a new upper triangular matrix

P LN
Gm-l m-1 Gk+l pk+1 Gk pk .

(==} |
]

' where the PL are either unit matrices or the permutation matrices exchanging
rows l and ,l+l, and Gg are the elementary transformation matrices eliminating

{
g the element below the diagonal in column { .
)

i -] -] -1
, H B = u P v
ence Q Gm_1 Fil G P L




Dantzig [8) and Bennett and Green [4) have shown that the "near commutativity
of the matrices Gl may be used to calculate a new lower triangular matrix L

such that

--1 -1
L =6 P ...G P L

Thus maintaining a true triangular decomposition. This is not however an

essential feature of the method.

Of course the permutation matrices I) ,» Q need not appear explicitly, All
that is necessary is to record the order of pivoting. The process is

repeated for the next iteration using the new U and (implicitly) the new L.

Method III f5l

Nei ther this method nor the next maintain a true triangular decomposition,

however, both require initially the elimination form of inverse,
Suppose we have B = LU or equivalently

B-l = U-l ce U-l L-l ¢ L-l

and again change column bk to Bk and B to 5.
The method proceeds as follows:-

Let v = L b

then L-1 B is identical to U except for column k which is now vk instead of




To reduce L-1 B back to upper triangular form the first steop carvied oual

is to reduce row k to zero in columns k+l,...,m,

7%

N\

TSt & .

To accomplish this we form a row transformation using the row vector

-1

w = (0,.--,0 )=(0,o|" )U

M kel Yk 00Uy k17" Yk

it e e % o

The row transformation is then the elementary matrix

and the desired elimination is performed by forming w;l L-1 5, since the !

U= (I - ek wé) U, and

columns k+l,...,m of L-.1 B are identical to u, Wk

w' U is simply the row (0,...,0

K ). Furthermore the first k

U k1’ Ykm

i columns of W are unit vectors and hence the first k columns of L-1 B are

e e e A e i e i it sl

k
)
! unchanged.
: -1 -1 =
l Now let tk = Wk L bk and form the elementary column transformation
] i
- = L
| Tk = I+ (tk ek) ey
.; ]
-1 -1 -1 - |
; then clearly forming T W, L B reduces column k to the unit vector e,

and columns k+l,...,m are unchanged since they have a zero on the pivot row.

(k)

The result then is a new upper triangular matrix, say U , obtained from U

by replacing the kth row and column by the unit vector ey

11




i.e AL T;l w;l B

- 5-1 - U(k)-l T;l w;l L-l
Using product form notation,if wve let Uék) denote the elementary matrix 9:
with uk‘ set to zero we may re-write 5-1 as

B - u'l'l u;fl Ul(:i-l U:‘k)-l 'I‘;l w;l L;l LIl

Note that the row transformation Wk can be represented (if desired) by a
product of two-element elementary column transformations. Also note that

although we have introduced two new transformations that if U was previously

in product form, U = Um 000 Ul' the new form U(k) is obtained by simply

deleting Uk and a single element at most from each U cos Um for a net

k+1

gain of one transformation in general (unless Uk happens to be the unit matrix).

-1 -1 -1
To carry the process on one simply treats Tk Wk L as the lower triangular

factor as before, although in fact if multiplied out the resulting matrix

would not in general be triangular.

Method 1V ;5!

This method, which also assumes the elimination form of inverse, proceeds by

inserting matrices Tk into the 1list Um 5o U1 and sometimes deleting a Uk'

To change bk to Bk we form the vector

-1 -1 -1 -1 -
tk - Uk+1 v Um Lm Tt L1 bk

and repilace Uk by the transformation

- - 1]
'I‘k = I + (tk ek) ey

12




Then

--1 -1 -1 -1 -1 -1 -1 -1
B = US .U T U e UL Ly

Continuation of this process is rather more complic:ited than in the preceding

methods. Suppose now we have changed bk to Bk and wish to change bl to PL .

There are two cases:-

1, 1f Z ‘ k then let

-1 -1 -1 -1 -1 -1 -1 -
b T B o

fO!‘m Tt = I + (tl - ee) el' ?

and replace UL by Tl as before, !

2, It £> x torm i

-1 -1 -1 -1 -1 - i
= iy L 04 }
ty T Uil vtL L b |

and the transformation TL as above. However, Ut is not replaced

-1 -
and Tl is placed directly before Tkl in the inverse transformation

list,

: --1 -1 -1 -1 -1, -1 -1 -1 -1 -1
~ le. B = UT LU T TUL L U LU L

Continuing further, if columns k ,...,kp have been changed and column{ is

1

=

to be altered, let k = min (k, ... kp) and carry out the above procedure,

1

! Having completed our summary of methods for updating a basis inverse or
substitute inverse we must consider their relative merits in the context of
the simplex method in terms of preserving sparsity, work required per

iteration, and storage and data handling considerations,

13
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The great advantage of Method 1 of course is its simplicity and the minimum
of computational steps and housckeeping involved, The essential step in

changing the basis in the simplex method, given the constraints
Ax = b

and the new column a‘j to enter the basis, is the calculation of the updated

column

to find the pivot row k from (assuming A3 0)

8 = min /613

i i
>0
i
The vector 6( , which we cannot avoid calculating, is precisely the vector

t used in Method I to update the basis inverse (and the right-hand side),

2+1

Methods II to IV all suffer from the disadvantage that they require not only

the vectorof for determining the pivot row but also another vector tk which

is only a partially updated form of aj. Methods II and IIl can morc or less

overcome this disadvantage by putting the vector L-l a, in temporary storage
N

in the course of calculating o, at the expensec of either using more of the

computer's core storage (thus effectively limiting the number of vectors

which can be saved for multiple pricing) or of using backing store. This

burden is, however, comparatively light compared to the immediate and acute

14
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difficulty encountered in Method IV where the vector tk to be calculated
for updating purposes cannot in general be known until after the ratio test
operation to determine the pivot row, This implies that tk must therefore

be calculated from scratch or obtained by backward transformations on the

vector of .

Now let us consider the implications of Methods II to IV in terms of work
per iteration expended in updating the basis inverse and of the necessary
data manipulation. Current packing methods of storing sparse data, parti=-
cularly strings of transformations (see [6}, [13)) make it rather difficult
to modify an existing product form of L and U, Replacement of Uk by a Tk
with more non-zeros in Method 1V, for example, necessitates either a whole-
sale shifting of elements of U, maintenance of a second transformation file
to be inter-woven with the first, copying out a complete new basis file or
initial and wasteful leaving of space for such eventualities, A similar,
in fact worse, situation occurs in Method 11 where on the average half of
the Uz transformations must be modified at each iteration, increasing the
number of non-zeros to be stored. Explicit storage of U can only be an
answer for very small problems. Some kind of two-file system, each taking
the new inverse in turn, would appear to be necessary in general, involving
a great deal of read/write activity. Method III on the other hand requires

only the elimination of previously non-zero elements in U - a comparatively

easier task. This point will be returned to in Section 5,

The amount of arithmetic work per iteration would appear to be greatest in

Methods II and III, The bulk of the work in Method III comes from applying

the Gl transformations to H to reduce it to triangular form, On the
average we expeci to have to deal with m/2 columns on the right-hand side of

the matrix, This is a considerable amount of computation and becomes pro-

15
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gressively worse as U fills in with each iteration. For Method I1I the
main effort is in computing the row vector wi. It will be shown in
Section 5 that this calculation may be performed concurrently with the
backward transformation phase of the next simplex iteration, The most
importan; point, however, is that U becomes progressively less and less
dense in this method and the calculation progressively easier, There is
admittedly the extra complication in Method III that row transformations

are called for, but this is more of an inconveneience than a problem and

as already pointed out could be circumvented.

Finally we consider the most important point -~ preservation of sparsity.

In their discussion Brayton et al [5) concluded that Method III was superior
to Method IV in this respect since both a row and column of U are eliminated
in gxchange for a vector wﬁ, which only has elements in positions k+l,...,m,
and a transformation vector tk which is the incoming column multiplied only
by L-l. On the other hand if in Method IV some columns with very small
pivot row index k is introduced then virtually every change thereafter will

be of type 2 and we cannot expect much improvement over the ordinary product

form method.

In comparing Methods II and II1 it again seems almost certain that Method III
will win out, The number of new elements added in the new transformations
would appear to be much the same, but as already mentioned in Method II U
becomes more and more dense while in Method I1II the density of U declines,

In this connection it should be pointed out that the columns of U most
frequently operated upon are the right-most, These, however, are just those
columns which will be initially the most dense after inversion,since inversion

schemes generally postpone the densest columns until last.

16




In the light of these considerations it appears that Method IIl1 is the

most promising for incorporation into the simplex method, both on the

grounds of work per updating and preservation of sparsity. However,

there is certainly some increase in updating work per iteration over the

standard product form (Method I) and a significant improvement in growth

of non-zeros in the basis representation is required to justify its use.

Some experimental results are presented in the next section.,

Although we have chosen Method III a< the best for our purposes this is
not to say that the others may not be superior in other circumstances.
Bartels's method (II) is of considerable importance in achieving highly

accurate solutions to small dense problems (see Bartels and Golub [2))

while Dantzig's original version [8) of Method II for specially structured

matrices is as yet untried,




4, COMPUTATIONAL RESULTS

Sume computational experiments have been carried out to determine whether
Method IIl gives a sufficient improvement over Method I in terms of growth

of non-zeros to warrant further investigation,

To carry out these experiments two linear programming codes were written
and run on the Stanford University 1BM 360/67. Both are all-in-core
FORTRAN codes using the elimination form of inverse. Neither employs
multiple pricing. The first code updates the inverse in standard product
form fashion (Method 1), the second is a modified version using Method III
to update the inverse. No attempt has been made to evaluate timings,
dependent as they are on machine used and programming technique. Only the

number of non-zero elements in the inverse representation is considered,

Five problems ranging from small to moderate have been used. These problems
are two of the well-known SHARE standard test problems, 2B and 1B, (see Smith
and Orchard-Hays [14}) and 3 other test problems supplied by Joel Cord of IBM,

The relevant statistics on these problems are given in Table 1.

Only the smallest problem was run to optimality, the remainder being cut off
after 200, 250, 300 and 350 iterations, To compare the two methods the set
of problems was run on both codes with a fixed inversion frequency = 40
iterations for the SHARE problems and 50 for the others. The initial com-
parison is arrived at by counting, at intervals of 10 iterations, the number
of new non-zeros added to the inverse since the last re-inversiaon, To
further remove constant factors only non-pivot elements are counted. (Both

methods give a net addition of one pivot element per iteration in general,)

18
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All problems were started from a slack basis and hence thr iterations up to
the first re-inversion are ignored, The number of new non-pivot non-zero
elements after multiples of 10 iterations from re-inversion is then averaged

for the remainder of the run, These figures are given in Table 2,

The raw data appears in more digestible form in Table 3, where Method I has
been used as a base and the fraction of new elements produced by Method III
is given, The improvement is obviously very satisfactory, with the possible
exception of problem 2, As might be expected the improvement tails off as
the number of iterations increases, particubrly for the smaller, denser

problems,

To obtain a better estimate of the effect of Method IIl on the simplex algorithm
we should also consider the total number of non-pivot non~-zeros in the inverse,
To this end we list the inversion statistics in Table 4 and compute the

fraction of total non-pivot non-zeros produced by Method III, again using

Method I as a base. The inversion statistics do not include the original
all-slack basis and are of some interest in themselves. The pivot choosing
procedure in decomposing '1'3" (see Section 2) is essentially algorithm 7 in

Dantzig et al [ﬁl .
The modified data for Method III appear in Table 5,

Although the problems are comparatively small and the sample is also small

the results in Table 5 are quite encouraging. It appears that for reasonably
sparse problems with 200-300 constraints a roduction of 20-30% in the number of
non~zeros in the substitute inverse may be expected using Method III, thus
considerably reducing the time spent in forward and backward transformation

in the simplex method. The results for problem 4 show that the reduction

may be dramatic.

19
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5. IMPLEMENTATION OF METHOD 1il

The results of the precoding section suggest that further experiments using
a modified production or commercial code would be worthwhile, It would also
appear that the modifications could be made and the extra updating work per

iteration accomplished at comparatively little cost,

The first cssential is clearly to have a code which employs the elimination

form of inverse. Given such a code it should be a simple matter to adjust

1 -
the storage and buffering activities such that the Tk Wk1 transforms can be

adjoined to the left of the product form L;l daa L;l of L-l.

The reduction of the kth row and column of U to the unit vector ek can

probably be accomplished satisfactorily by simply setting indicator bits,

-1 = -1 -
Usually we will have U represented as Ul1 U2 o0 Uml, or rather the packed
vectors ut corresponding to thesc elementary matrices, The reduction may

then be accomplished by tagging U;l with a bit to indicate it is to be skipped
over, Furthermore using, say, the bilocked index scheme (see Smith [13_]) for
storing the vectors uy the row index k, if it appears, may be tagged to
indicate the element is zero for ¢ = k+l1,...,m, Failing this the ukl. elements

could be physically replaced by zeros if necessary,

This scheme is of course inefficient in the sense that in an out~of=-core
system progressively more and more valueless data must be buffered in and out
of core, On the other hand if the system is alrcady compute bound:.rather
than 1/0 bound this is no restriction, and even if this is not the case the
very frequent re-inversions carried out for large problems should prevent

this inefficiency from reaching really noticeable proportions.

20




Finally let us consider the process of computing wi. For simplicity let
us assume we are carrying out the first iteration after a re-inversion, !

We then have

Now the calculation of

w!' = (0,...,0 L

N ) U

e k+1 " Yk

and also the modification of U to U(k) may be carried out in a single pass

-1 -1 ']

from left to right through the transformations Ul 000 Um 5 To see this

notice that in computing say

-1
(O,.‘.’O,zk"'l"“’zm) UL -Eor z > k

P M SR

only the elements z +1,...ﬁi play any part in the arithmetic since U and

k
UL are upper triangular, The elenments z ,..,zm are unchanged., We

(k)

L+1’

. A Pn i e e

therefore arrange the computation of wi and the modification of U to U

as follows:-

e e e . € e

Initial Step

-1
k-1°

Create a zero row vector and skip transformations Uzl vee U Tag U;l.

Let f = k+l,

General Step

-1
For transformation Ul o s ug is non-zero extract it and add it in

i position £ of the row vector, marking the element as now being zero in q{l.

Post-multiply the row vector by UZI. Proceed for l: k+l,..,.,m,

21




A very advantageous result of this procedure is that the updating of the
ivvoerse can be carried out concurrently with the backward transformation
of the follow.ng simplex iteration, In calculating the pricing vector for

the next iteracion we must compute

Tr,= c! U(k)—l =1 =1 =]

(k)

for some row vector c'. Now the first k-1 columns of U are identical
with those of U, The modificat ion of the remaining columns of U may be
carried out in the same pass through the transformation file as that for
the calculation of ¢ ' and furthermore only one unpacking of the non-zeros
from each ut is necessary. Having obtained wé the new transformations
T;l, W;l may be attached to L“1 and the remainder of the calculation of¥r’
can proceed, Looking to the future, this procedure is admirably suited

to parallel processing facilities.

22
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6. CONCLUSION

Linear programming inversion routines have now reached a very high level of
sophistication and efficiency, both in terms of speed and sparseness of the
resulting inverse, Although there is doubtless still some room for improve-
ment it seems likely that further improvements in efficiency must be sought
in other areas, The attempt to maintain a sparse inverse is one such area
and the results of Section 4 give considerable grounds for optimism, What
is needed now is full scale experimentation with some of the methods reviewed
here on large problems of 1000 and more constraints to confirm and extend

these results.

23
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